
Math 254A Lecture 8 Notes

Daniel Raban

April 14, 2021

1 Integral Formula for the Fenchel-Legendre Transform

1.1 The Fenchel-Legendre transform and the integral formula

Last time, we defined the Fenchel-Legendre transform s∗ = supx s(x) + 〈y, x〉, which
is convex, lower semicontinuous, is s∗ : X∗ → (−∞,∞], and is not always +∞.1 We also
saw that s = (s∗)∗, so we can recover s from its Fenchel-Legendre transform.

Let’s focus on the X = Y ∗ case, since this also subsumes the X = Rk case. Also assume
λ 6= 0.

Theorem 1.1. In this generalized type counting problem for X = Y ∗,

s∗(y) = log

∫
e〈y,ϕ〉 dλ

for y ∈ Y .

Before proving this, observe:

exp(s∗(ty + (1− t)w)) =

∫
et〈y,ϕ〉+(1−t)〈w,ϕ〉 dλ

=

∫
et〈y,ϕ〉 · e(1−t)〈w,ϕ〉 dλ

Using Hölder’s inequality,

≤
(∫

e〈y,ϕ〉 dλ

)t(∫
e〈w,ϕ〉 dλ

)1−t
,

so taking logs gives that this expression is convex. We can also check that this expression
is lower semicontinuous.

1Many authors study s̃ = −s throughout and then get s∗(y) = supx〈y, x〉− s̃(x) and s̃(z) = supy〈y, z〉−
s∗(y). We use a different convention.
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1.2 Proofs of the upper bound and the lower bound

Proof. (≤): Since s∗(y) = supx s(x) + 〈y, x〉, we need to show that

s(x) + 〈y, x〉 ≤ log

∫
e〈y,ϕ〉 dλ

for all x. Let ε > 0, and consider U = {x′ : 〈y, x′〉 > 〈y, x〉 − ε}. We know that

sn·(s(x)+〈y,x〉) ≤ en(s(U)+〈y,x〉)

= eo(n)en〈y,x〉λ×n

({
p :

1

n

n∑
i=1

ϕ(pi) ∈ U

})

= eo(n)en〈y,x〉λ×n

({
p :

n∑
i=1

〈y, ϕ(pi)〉 > n〈y, x〉 − nε

})
Exponentiate both sides in the inequality and apply Markov’s inequality:2

≤ eo(n)en〈y,x〉enε−n〈y,x〉
∫
e
∑n

i=1〈y,ϕ(pi)〉 dλ×n

= eo(n)+nε

∫
Mn

n∏
i=1

e〈y,ϕ(pi)〉 dλn

= eo(n)eεn
(∫

e〈y,ϕ〉 dλ

)n

,

so

n(s(U) + 〈y, x〉) ≤ o(n) + εn+ n log

∫
e〈y,ϕ〉 dλ.

Divide by n and send n→∞ to get

s(x) + 〈y, x〉 ≤ s(U) + 〈y, x〉 ≤ ε+ log

∫
e〈y,ϕ〉 dλ.

Since ε is arbitrary, we get (≤).
To get the lower bound, let’s look at the proof of the upper bound and try to make it

as tight as possible. The first inequality is close if U is a small enough neighborhood of x.
In the Chernoff bound, we want to see when this is close to equality. To prove (≥), we will
look at the Chernoff bound step; here’s the idea: Consider

en〈y,x〉λ×n

({
p :

1

n

n∑
i=1

〈y, ϕ(pi)〉 ∈ U

})
,

2This is sometimes called a Chernoff bound.
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where we want to make U small enough around x to force this to be ≈ 〈y, x〉. We then get

en〈y,x〉λ×n

({
p : exp

n∑
i=1

〈y, ϕ(pi)〉 ≈ en〈y,x〉,
1

n

n∑
i=1

ϕ(pi) ∈ U

})
.

This is

≈ e±εn
∫
{ 1
n

∑n
i=1 ϕ(pi)∈U}

e
∑n

i=1〈y,ϕ(pi)〉 dλ×n ≤ eεn
∫
Mn

e
∑n

i=1〈y,ϕ(pi)〉 dλ×n.

So the question becomes: Can we find an x where most of the mass lies in the set
{ 1n
∑n

i=1 ϕ(pi) ∈ U}?
Now let’s prove (≥) carefully. First assume two conditions:

1. Z =
∫
e〈y,ϕ〉 dλ <∞.

2. p takes values in a compact subset K of X.

In this case, we can define a new probability measure on M by

dθ(p) =
1

Z
e〈y,ϕ(p)〉 dλ(p)

(using assumption 1). Now, for any A ⊆Mn,∫
A
e
∑n

i=1〈y,ϕ(pi)〉 dλ×n = Znθ×n(A).

With A = { 1n
∑n

i=1 ϕ(pi) ∈ U}, we get

Znθ×n

({
1

n

n∑
i=1

ϕ(pi) ∈ U

})

This suggests we can use the Weak Law of Large Numbers for θ and ϕ.3 To do this carefully,
we need assumption 2: p takes values in K ⊆ X, so it has a barycenter with respect to θ:
a unique x ∈ K such that ∫

〈y, ϕ〉 dθ = 〈y, x〉 ∀y ∈ Y.

And now a vector-valued Weak Law of Large Numbers holds: for this x and any weak*
neighborhood U 3 x, we get

θ×n

({
1

n

n∑
i=1

ϕ(pi) ∈ U

})
= 1− o(1)

3This is the key idea of the lower bound proof. It is called the change of measure idea.
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as n→∞. As a result, for any weak* neighborhood of this x, we now get∫
{ 1
n

∑n
i=1 ϕ(pi)∈U}

= Znθ×n

({
1

n

n∑
i=1

ϕ(pi) ∈ U

})
≥ Zneo(n).

Insert this to reverse the previous upper bound proof to get an x such that s(x) + 〈y, x〉 ≥
logZ − ε. This gives s∗(y) = logZ.

To remove assumptions 1 and 2, recall that (M,λ) is σ-finite and X =
⋃

nKn, so for
any a <

∫
e〈y,ϕ〉 dλ, there exists a measurable A ⊆M such that ∞ >

∫
A e
〈y,ϕ〉 dλ > a, and

ϕ(A) takes values in some Kn. Now run the previous argument with dλ′(p) = 1A(p) dλ(p)
to get that for every ε, there is an x such that s(x)+〈y, x〉 ≥ log a−ε. Since a <

∫
e〈y,ϕ〉 dλ

was arbitrary, we get

s∗(y) = log

∫
e〈y,ϕ〉 dλ,

even if this is +∞.
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